A CLASS OF EXACT S'OLUTIONS OF THE IDEAL
PLASTICITY EQUATIONS
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A class of exact solutions is formulated for the ideal plasticity equations in the case of
plane deformation. The solutions describe the plastic state of various wedges, notched
half-planes, and domains in the form of funnels produced by detonation, the plastic state
of domains having a horn configuration, etc. Many of the solutions have natural bounda~-
ries comprising envelopes of slip lines. The equations for the boundaries, slip lines,
and stresses are presented in explicit form.

1. We consider the plane deformation of an ideally plastic medium. Let (x;, X,) be the Cartesian co-
ordinates in the plane Oxx,, (A4, A,) the characteristic coordinates, o the first invariant of the stress
tensor, ¢ the slope angle of the maximum principal stress relative to the axis Oxy, and k a constant of the
material. In this notation the limiting equilibrium equations for the medium have the form [1}:
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In the plane Ox;x, we introduce polar coordinates (r, §) and a new unknown function 6 , wWhich is the
angle between the coordinate lines & =const and A, =const, It follows from Egs. (1.1) and the definition of
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where ®,(A ), ®4(A,) are arbitrary functions. Eliminating r and  from the system (1.2), we obtain one
equation in &§:
2 _1n|tg 8] 4 Dy (hy) 7 tg & — D (A,) -2 ctg § = 0
sany 118 8+ D2 (o) - t2 8 — D1 () - ctg § = 0.
We seek the solution of the latter equation in the class of functions tan 6 =¢ 1(7\1)/5 o(Ay). T cyd +cy =05
¢;®,+¢c3= 0, where ¢y, ¢y, and c; are constants, then in the given class the solution has the form
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For ¢y =0 the slip lines A, and A, are either two families of logarithmic spirals or two families of coor-
dinate lines r=const, 6 =const. This variant has been discussed in [1]. For ¢,# 0 it may be assumed with-
out loss of generality that ¢y =1; cy=cg=0; ®4Q) =Af=p; Py(Ay) = Ad= p,, where py, po=0. After the sub-
stitution of (1.3) into (1.2) and (1.1) Eq. (1.1) is readily integrated:
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where (p, v) are polar coordinates in the plane of the parameters (u1, p,); r® and ¢ are constants reflect-
ing the arbitrary choice of length scale and reference origin for the angle 6 ; and o is the additive con-
stant pressure. Hereinafter we let r’=1, ¢%=0, and ¢°=0,

The solution (1.4) is conveniently analyzed in the plane of the parameters (uy, p,); the coordinate
lines py, p, in this plane are the slip lines in the physical plane Oxx,, the slope angle of the radius v =const
relative to the p, axis is equal to the angle of intersection of the slip line p, in the physical plane with the
radius § =const, and, finally, the square of the radius p in the plane (u, p,) is equal to the dimensionless
compression 6/2k at the corresponding points of the physical plane.

2. Let us take the upper signs in (1.4). In the single-sheeted plane Ox;x, the solution (1.4) can exist
only up to the branch line A=8(r, 0)/8(uy, p,) =0. The line A =0 satisfies the equation sin2v =4p2/1+4p?
and has two branches: p%=!/ 5 cot v, pi= 1/2 tan v (Fig. 1). It can be shown that in the plane Ox,x, the
branch p? =1/2 cot v is the envelope of the slip lines ity and the turning line of the family u,. Analogously,
the branch p?= —;tanvis the envelope of the family of slip lines 5 and the turning line of the family p4. The
increment of the angle ¢ in the plane Oxyx, cannot be greater than 2w, In (1.4), therefore, we can only consider
those parameters for which the increment of 6 is less than 27, Thus, considering the mapping of various
(¢ s 1) domains in which A # 0 and the variation of § is less than 27, onto the plane Oxx,, we obtain various

integrals of Eqs. (1.1). These integrals can be interpreted as exact solutions of the corresponding boundary-
value problems.

In the (u4, p,) plane we construct the lines 6 =6 0=const and analyze the particular solutions (1.4).
1t follows from (1.4) that the mappings of (u, y4) domains symmetric about the bisector y, =y, onto the
plane Ox;x, are symmetric about the line # =0. If 0=6 ° =7 /4, the line 6 =0 ° is defined for 0=v =m/4;
m/4+6% =y =n/2; if "> /4, it is defined for 0=v< 7/4, For 6 =0 ;> 0, 0=y < 7/4, r— the angle
& —m/ 4 and the pressure g— ; but if 0 < 8° < by wlh+0, << v < A/2 , r—> oo, then d—+m/4—0° and

o —0. Moreover, gf_l‘le oy =0 for cos 2v‘.~<<p2-— Yyotg v)z 0.We consider the flow corresponding in
We(0=0"> N

(pq, 1o to the domain AjA;A ALA ) (Fig. 1). The domain AjA;A AA; maps onto the symmetric wedge do-
main ByB;B,B¢B,' in Fig. 2. The wedge angle is equal to 7/2. The side B,B;B, is the envelope of the family
of lines p;. In the part ByB, Y/, cos™1(1=V'5)/2< v < 7/2 the curve B,B,B; is concave, and in the part
B4B31r/4 =< 1/2 cos~! (1—V5)/2 it is convex; as r—o the angle 6 (By) —7/4. The sides of the wedge are
acted upon by a constant tangential stress 7 =k and a normal stress that tends to zero as r—w. As x;—~w
the stressed state in the wedge interior tends to a uniform state, the slip lines tend to the straight lines

X, = £ Xy +const, the angle ¢ — 7 /2, and the compression o —0.

Next we consider the flows against both sides of the curve A;A; and those bounded by this curve and
the line pu,= u§= const; 0< u351/2. In the physical plane these flows have a horn configuration. The inner
boundary of the flows is the envelope of the slip lines ;i 4, and the outer boundary is one of the lines p .

As 8 — « the inner and outer boundaries tend to arcs of circles. A similar flow (Hartmann-type) bounded
by logarithmic spirals is discussed in [2]. )

We examine the flow against the line =y, and bounded by the lines A,A;, AsA,, and x; =x}=const
(Figs. 1 and 3). For definiteness we choose x{ so that in the plane Ox;x, the straight line C;Cg is normal
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Fig. 2
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to the curve C,C,. Tt can be shownthat cos 2v =3/27r tan v at the point C;. The boundary C,C, is acted upon
by a constant tangential stress, on the surface C;C; as x,— the {angential stress decays rapidly (J —7/4),
and the normal stress increases (p—«). Directly against the boundary C,C; the flow has a horn configura-
tion.

Figure 4 shows the slip lines of the flow corresponding o the domain A;A A A, in Fig. 1. The bounda-
ries D,D; and D,D.D; are the envelopes of the families of slip lines py, p,. The flow against the boundary
D,D; has a horn configuration, and against the boundary D,D¢D, a wedge configuration.

Next we consider the flows bounded in the (u, 1, plane by the curves A,Ag, 6 =6 0,0 =0 0+ 3%, [0 <
2m and the axis p,=0. As 0 0— o the inner natural boundary of the flow and all the slip lines p tend to
circles, while the slip lines p, tend to the radii § =const. If the flow in (pty, ¢, is bounded by the curves
9 =69 6 =6 %+y? and the condition p2=1!/,cot v, then as 6 ®*—~w the inner boundary of the flow tends to a
circle, and both families of slip lines tend to logarithmic spirals as r—w,

Analogous flows are created in the mapping of domains p=<p,.

3. We now take the lower signs in the solution (1.4). In this case there are not real branch lines, and
any parameters for which the increment of the angle 6 is less than 27 can be taken in Eqgs. (1.4). In the
(11, o) plane we construct the lines 6 =9 0= T/2~a,. Tt can be shown that in the (u, 19} plane the lines
+ oy are symmetric about the bisector py=p,. If | o4 =m/4, then the line 6§ =6 ° passes through the origin
1=, =0, and the slope angle of the line at the origin is equal to 7/4 +o,. If | ag|= n/4, then the lines
0 =0 ? begin at the points p =V | aOI—W74, v =0 for a < 0 and v =7/2 for o> 0. As p— all the lines 6 =60
tend to the bisector py=p, (Fig. 5).

The domain |o g} =7/4 maps onto the quarter-plane &OF in Fig. 6. As X, = the stressed state in-
side the quarter-plane tends to uniform, the slip lines tend to the straight lines x, =% %, +const, ¢— /2,
and ¢ —@, The remaining domains between the curves 8 =const map onto corresponding wedges in the plane
Ox4Xy. For |a | >7/4, 6=0% r— o the compression 0/2k tends to the finite value | ¢,| —7/4, and theangle
@ ~~6%+71/4 for ay>0 and ¢—09—7/4 for ay< 0. As r—0 for any 8° the slip lines tend to logarithmic
spirals & =—n/4,90— 6% o —o. The slip lines [T =ug: const tend as v -0 to the origin X; =X, =0, at which
time the angle 8 —«, If v —7/2, the slip line asymptotically approaches the straight line § =(n/ H~(p 3)2.
The origin x;=%,=0 is a singularity in the given solution,

4, If nécessary, the flow domains (1.4) can be bounded by the introduction of rigid zones or bounding
surfaces, Singularities are excluded from the solutions in exactly the same way.
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Corresponding to the stresses (1.4) is a certain distribution of rates. We assume that the material
is incompressible and that the stress and strain rate tensors are coaxial., Inasmuch as the stresses are
known from (1.4), we can reduce the rate equations to a system of telegraphic equations in a plane whose
mapping onto the physical plane is known, Those equations can be analyzed by the usual methods on the
basis of the Riemann function [1].

We conclude by writing out the original coordinate system the equations for the slip lines and ex-
pressions for the stresses oy, 04y, 04,. In the characteristic coordinates p 4, 1, the solution (1.4) takes
the form

g T

g =pitph e=pi—pd+ 5 (4.1)

Vl"-% + ”% 421, b 2 — M1 2
= ¢ ; 9=u1—uz+ar0tg;2+z- (4.2)
For p,=const {¢,=const) and a variable p, (i,) the radius vector determined by Egs. (4.2) describe in the
plane Ox;x, one of the slip lines of the family 4 (). The corresponding stresses in this case can be cal-
culated by the tensor projection rules and Eqs. (4.1):
041 = 6 - kcos 2¢ = 2k (u] -+ u3) — keos 2 (pf — pb);

Oy = 6 — kcos 2¢ = 2k (u} -+ 1d) - Ecos 2 (u] — uil;

01y = ksin2¢ = — ksin 2 {nf — ud).
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