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A c l a s s  of exact  so lu t ions  is f o r m u l a t e d  fo r  the idea[  p l a s t i c i ty  equa t ions  in the case  of 
plane de fo rma t ion .  The so lu t ions  d e s c r i b e  the p las t ic  s ta te  of va r ious  wedges ,  no tched  
ha l f -p l anes ,  and doma ins  in the  f o r m  of funnels  p roduced  by detonat ion,  the p las t ic  s ta te  
of domains  having  a ho rn  conf igura t ion ,  e tc .  Many of the solut ions  have na tu r a l  bounda-  
r i e s  c o m p r i s i n g  enve lopes  of  sl ip l ines .  The equat ions  fo r  the bounda r i e s ,  slip l ines,  
and s t r e s s e s  a r e  p r e s e n t e d  in expl ic i t  f o r m .  

1. We c o n s i d e r  the plane de fo rm a t i on  of  an idea l ly  p las t ic  m e d i u m .  Let  (xl, x 2) be the  C a r t e s i a n  c o -  
o rd ina t e s  in the plane Ox~x2, (~,~, ~t 2) the  c h a r a c t e r i s t i c  coord ina te s ,  (r the f i r s t  invar ian t  of the s t r e s s  
t e n s o r ,  ~0 the s lope angle  of the  m a x i m u m  pr inc ipa l  s t r e s s  r e l a t i ve  to  the  axis  Oxl, and k a cons tan t  of the 
m a t e r i a l .  In this  nota t ion the l imi t ing equ i l ib r ium equat ions  fo r  the m e d i u m  have  the f o r m  [1]: 

t a~ oqD = 1 ca aqD = O; (1 .1 )  
2k O~l Oki O; 2k02,2 ~ Ok2 

axo = t g  q~ . . . .  tg (p + 

In the  plane Oxlx 2 we in t roduce  po la r  coo rd ina t e s  (r, 0 ) and a new unknown function 6 ,  which  is the 
angle between the coord ina te  l ines  0 =eons t  and X 2 =cons t .  It fo l lows f r o m  Eqs .  (1.1) and the definit ion of 
6 that  

t Or 8 no, I Or - - t g 8  ao 
r a;~, = ctg b~'  r OX~ = ~ . ;  (1.2) 

q) : (~1  (~'1) - -  (]D2 (~ '2) '  0 : q) - -  ~ - -  ~ : (~1 (~'1) - -  (])2 (A2) - -  8 4 '  

where  r 1), ~2(~2 ) a r e  a r b i t r a r y  funct ions .  E l imina t ing  r and 0 f r o m  the s y s t e m  (1.2), we obtain one 
equat ion in 6:  

O~ (D' a , 

We seek  the solut ion of the l a t t e r  equat ion  in the c l a s s  of  funct ions  tan  6 =~ l(),l)/~ 2(?,2). If  c1r 1 +c2-> (~; 
e l r  2 +c3 -~ 0, where  cl,  c2, and c 3 a r e  cons tan t s ,  then in the given c l a s s  the solut ion has  the f o r m  

V clq): + c~ 
8 = 4: arctg r + c3"" (1.3) 

F o r  c 1 =0 the slip l ines  k 1 and k 2 a r e  e i the r  two f a m i l i e s  of  l oga r i t hmic  s p i r a l s  o r  two f a m i l i e s  of  c o o r -  
dinate  l ines r =cons t ,  0 = c o n s t .  This  va r i an t  has  been d i s c u s s e d  in [1]. F o r  e 1 # 0 it m a y  be a s s u m e d  wi th -  
out loss  of  gene ra l i t y  tha t  c1=1;  c2=e3=0 ;  Ol(Xi) = ) ~ = ~ 1 ;  @2()'2) = )'~ = ~2, where  Pl ,  ~t2-> 0. Af ter  the  sub-  
s t i tut ion of (1.3) into (1.2) and (1.1) Eq. (1.1) is r e ad i l y  in tegra ted :  

a _ = o ,  ~• r 9 ~ ~ ' 2k ~ ' = cos2v+=2-  ~q)~ (1.4) 
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2r~ -9" sin 2v. 
r - -  p . s i n 2 v e -  0 = p~cos2v ~ - -v  + ~_ + q~o; 

where  (p,  v) a r e  polar  coordinates  in the plane of the p a r a m e t e r s  (# l, # 2); r~ and H 0 a r e  constants  r e f l ec t -  
ing the a r b i t r a r y  choice of length sca le  and r e fe rence  or igin for  the angle 0 ; and a 0 i s t h e  additive con-  
stant p r e s s u r e .  Here ina f te r  we let r ~  H~ and a ~  

The solution (1.4) is conveniently analyzed in the plane of the p a r a m e t e r s  (# l, #2); the coordinate  
l ines # i, #2 in this plane a re  the sl ip l ines in the physical  plane Ox~x2, the s lope angle of the radius  v =const  
re la t ive  to the #2 axis  is equal to the angle of in tersec t ion  of the sl ip line #~ in the physical  plane with the 
radius  0 =const ,  and, finally, the square  of the radius  p in the plane (# 1, # 2) is equal to the d imens ion less  
c o m p r e s s i o n  a/2k at the cor responding  points of the physical  plane. 

2 .  Let us take the upper  signs in (1.45. In the s ing le - shee ted  plane Oxlx 2 the solution (1.4) can exist  
only up to the branch line A = 0 ( r ,  0 5/0(#1, #25 =0. The line A =0 sa t i s f ies  the equation s in2v =4p2/(1 +4p 4) 
and has two branches:  p2 =~/2 cot v ,  p2 = 1/2 tan v (Fig. 1). It can be shown that  in the plane Oxlx 2 the 
branch p 2 = 1/2 cot v is the envelope of the slip lines # 1 and the turning line of the fami ly  # 2. Analogously,  
the b ranch  p2= ~ t a n ~ i s  the envelope of the fami ly  of sl ip l ines #2 and the turning line of the fami ly  #1. The 
inc remen t  of  the angle 0 in the plane Oxlx 2 cannot be  g r e a t e r  than 21r, In (1.4), the re fore ,  we can only cons ider  
those p a r a m e t e r s  for  which the increment  of 0 is less  than 27r. Thus,  consider ing the mapping of var ious  
(# 1, # 2) domains in which A r 0 and the var ia t ion  of 0 is  less  than 2~r, onto the plane Ox~x2, we obtain var ious  
in tegra l s  of Eqs.  (1.1). These  in tegrals  can be in te rp re ted  as exact  solutions of the cor responding  boundary-  
value p rob l ems .  

In the (#1, #2) plane we cons t ruc t  the lines 0 = 0 ~  and analyze the pa r t i cu la r  solutions (1.4). 
It follows f r o m  (1.4) that  the mappings of (# 1, # 2) domains s y m m e t r i c  about the b i s ec to r  # 1 =# 2 onto the 
plane Oxlx 2 a r e  s y m m e t r i c  about the line 0 =0. If 0-<0 0 ---7r/4, the l ine 0 =0 o is defined for  0-<v <-v/4; 
7r /4+0  ~ -<v-<7r/2; if 0~ 7r/4, it is defined for  0-<v< 7r/4. F o r  0 =0 0 > 0, 0-<9 < 7r/4, r - - ~  the angle 
6 - ~ v / 4  and the p r e s s u r e  c r - -~ ;  but if 0 < 0 ~ < n/4; ~/4--0o ~ v ~< n/2 . r -+ ~ ,  then 6---,'~/4-0 ~ and 

e ~ 0 .  Moreover ,  d.Y.~0=00>0 ~ 0  for  cos2v'~ p~--~/2etgv ~ 0.We eons ider  the flow cor responding  in 

(#1, #25 to the domain AIA3A4A6A 1 (Fig. 1). The domain A1A3A~A~A 1 maps  onto the s y m m e t r i c  wedge do- 
main B1B3B4B6B 1' in Fig. 2. The wedge angle is equal to 7ri~. The side B~B~B~ is the envelope of the fami ly  
of l ines # 1~ In the par t  B3B 1 ~/2 e~ ( 1 - ~ 5 ) / 2  < ~ < 7r/2 the curve B~B3B 1 is concave,  and in the par t  
B4B3~r/4 - ~  < 1/2 cos -1 ( 1 - 4  5)/2 it is convex; as r--*~,, the angle 0 (B1)~ 7r/4. The sides of the wedge a re  
acted upon by a constant  tangent ia l  s t r e s s  "r ; k  and a normal  s t r e s s  that tends to ze ro  as r ~ .  As x ~  ~ 
the s t r e s s e d  s ta te  in the wedge in te r io r  tends to a uniform state,  the slip lines tend to the s t ra ight  lines 
x2 = ~: x~ +const,  the angle H--7r /2 ,  and the compres s ion  e --*0. 

Next we consider  the flows against  both s ides  of the eurve A~As and those  bounded by this curve  and 
the line #2= #~= eonst; 0< p ~ - l / 2 ~  In the physical  plane these  flows have a horn configuration.  The inner 
boundary of the flows is the envelope of the slip l ines p l, and the outer  boundary is one of the lines # 1. 
As 0 --* ~ the khmer and outer  boundaries  tend to a r e s  of c i r c l e s .  A s im i l a r  flow (I-Iartmann-type) bounded 
by logar i thmic  s p i r a l s  is d iscussed  in [2]. 

We examine the flow against  the line # t =#2 and bounded by  the lines A~A~, A4A2, and x 1 =x~ --eonst 
(Figs .  1 and 3). Fo r  def ini teness  we choose x~ so that in the plane Oxlx 2 the s t ra ight  line C~C8 is normal  

= / .  

St 

A, i/~.z~ \ \ \ \ - - - - - - -  
0 ~' 2 W~ 

Fig. 1 

~ 2  
Bf 

Bj 

B6 

Fig. 2 

236 



C 8 
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to the curve C5C 4. It can be shownthat cos 2u =3/~v tan u at the point C a. The boundary C4C 5 is acted upon 
by a constant tangential s t r e s s ,  on the surface C5C 8 as x2-~r the tangential  s t r e s s  decays rapidly (6 ~ v / 4 ) ,  
and the normal  s t r e ss  increases  (p~oo). Direct ly  against the boundary C4C s the flow has a horn configura-  
t ion. 

Figure  4 shows the slip lines of the flow corresponding to the domain A~AtA~A 1 in Fig. 1. The bounda- 
ries D4D 5 and DtD6D 1 are  the envelopes of the famil ies  of slip lines Pi, ~2- The flow against the boundary 
D4D 5 has a horn configuration, and against the boundary DtD6D l a wedge configuration. 

Next we consider  the flows bounded in the (t~t, #2) plane by the curves  A4As, 0 =0 0, 0 =0 0+ $0, [~b0[ < 
27r and the axis #z =0. As 0 0 ~ o  the inner naturai  boundary of the flow and all the slip lines #~ tend to 
c i rc les ,  while the slip lines V2 tend to the radii  0 =const .  If the flow in (t~, #2) is bounded by the curves  
0 =0 0, 0 =0 0+$0 and the condition p 2 ~ l / 2 c o t  v,  then as 0 ~  the inner boundary of the flow tends to a 
circle ,  and both famil ies  of slip lines tend to logar i thmic spirals  as r ~  oo 

Analogous flows are  created in the mapping of domains # t - #  2- 

3. We now take the lower signs in the solution (1.4). In this case  there  are  not rea l  b ranch  lines, and 
any pa rame te r s  for  which the increment  of the angle 0 is less  than 2~ can be taken in Eqs.  (1.4). In the 
(Pl, t~2) plane we construct  the lines 0 =0 0= ~r/2_a0" It can be shown that in the (#~, #2) plane the lines 
• a 0 are  symmet r i c  about the b i sec tor  # t  =#2- If [ aol-<~/4, then the line 0 =0 0 passes  through the origin 
#1 =/~2 =0, and the slope angle of the line at the origin is equal to ~ / 4 + a  0. If [ a0[~  ~/4, then the lines 
0 =0 0 begin at the points p =~[  a o I - l r ] 4  , v =0 for a0< 0 and v =7r/2 for a0> 0. As p-~o~ all the lines 0 =0 ~ 
tend to the b isector  #~ =#2 (Fig. 5). 

The domain la  0] -<~/4 maps onto the quar te r -p lane  ~ O F  in Fig. 6. As x 2 - ~  the s t r e s sed  state in- 
side the quar te r -p lane  tends to uniform, the slip lines tend to the straight lines x~ = �9 x~ +const ,  ~ 1r/2, 
and r ~ 0 .  The remaining domains between the curves  0 =const  map onto corresponding wedges in the plane 
Oxtx 2. For  Ia  01 > ~ /4 ,  0 =0 ~ r - - ~  the compress ion  a /2k  tends to the finite value I a01 - I r /4 ,  and theangle  
q ~ 0 ~  forr~0>0 and r 1 7 6  for  a0< 0. As r-~0 for any 0 ~ the slip lines tend to logari thmic 
spirals  5 =-7r/4, ~--* 0 0 a ~ oo. The slip lines #2 =~ 0= const tend as v ~ 0  to the origin x 1 =x 2 = 0, at which 
t ime the angle 0-~ oo If u --~7r/2, the slip line asymptot ical ly  approaches the straight  line 0 =(~r/4)-(#~ z. 
The origin x t =x 2 =0 is a s ingulari ty in the given solution. 

4. If necessa ry ,  the flow domains (1.4) can be bounded by the introduction of rigid zones or  bounding 
surfaces .  Singularities are  excluded f rom the solutions in exactly the same way. 
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Corresponding to the s t r e s se s  (1.4) is a cer tain distribution of ra tes .  We assume that the mater ia l  
is incompress ible  and that the s t r e s s  and strain rate tensors  are  coaxial.  Inasmuch as the s t r e s ses  are  
known f rom (1.4), we Can reduce the rate equations to a sys tem of te legraphic equations in a plane whose 
mapping onto the physical  plane is known. Those equations can be analyzed by the usual methods on the 
basis of the Riemann function [1]. 

We conclude by writ ing out the original coordinate system the equations for  the slip lines and ex- 
press ions  for the s t r e s ses  a tl, a22, ff 12. In the charac te r i s t ic  coordinates p 1, g 2 the solution (1.4) takes 
the form 

- -  = = p2 ~- ~-; (4.1) 2k 

F ~ - - - - -  O ~tl~2 (4.2) 

For  ~2 =const  (#1 =eonst) and a variable ~ i (~2) the radius vector  determined by Eqs. (4.2) descr ibe  in the 
plane Oxlx 2 one of the slip lines of the family ~ 1 (~2). The corresponding s t r e s se s  in this case  can be cal-  
culated by the t ensor  projection rules  and Eqs. (4.1): 

%,. = ~ '-- k cos 2%o = 2k (~ -'- try) + k cos 2 (,tt~ -- ,itS); 

= k s i .  = - k s i . 2  
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